skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Penuel, William R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper examines design decisions of a team seeking to support students’ working with data in a standards-based high school biology curriculum. The team’s decisions required them to balance four goals that often came into tension during development: (1) helping students meet performance expectations specified in the targeted standards; (2) engaging students with extant datasets; (3) supporting student sensemaking; and (4) supporting coherence from the student point of view. Efforts to balance these goals in design revealed the limitations of existing science standards for adequately supporting students’ work with extant datasets and for developing students’ skill in covariational reasoning. Achieving the goals of supporting student sensemaking in science requires more intensive support for building the conceptual foundations of statistical concepts when developing a grasp of the practice of using mathematics in science. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. ABSTRACT Reform‐oriented science classrooms encourage environments in which students engage in a collective enterprise of making sense of their science ideas together. Teachers who strive for these sorts of environments support students in collaboratively constructing and answering their own questions about phenomena and making sense of competing ideas together. However, to engage with one another productively, students must ask questions, share incomplete thoughts, and comment on each other's ideas, all of which can be seen as risky and unfamiliar behavior that may result in feelings of uncertainty or other negative classroom consequences. We conduct an explanatory case study using student and teacher interviews, teacher surveys, and classroom video collected over 2 years to investigate how one teacher used classroom norms to establish and maintain a culture in which students appeared committed to taking risks to improve their collective knowledge‐building. We found that norms were one practical tool the teacher used to encourage students to take risks and that also seemed helpful for negotiating individual and group uncertainty. Norms were also tools the teacher used to ensure that she and her students had similar expectations for classroom engagement. This study practically addresses some key challenges teachers face in enacting reform‐oriented science teaching and offers suggestions for how continued research regarding norms and uncertainty can continue to further science reform efforts. 
    more » « less
    Free, publicly-accessible full text available June 18, 2026
  3. A key goal of science education articulated in A Framework for K-12 Science Education is to create opportunities for students to answer questions about the world that connect to their interests, experiences, and identities. Interest can be seen as a malleable relationship between a person and object (such a phenomenon students might study). In this paper, we analyzed data from a design study of an online course focused on preparing 11 secondary teachers to design three-dimensional tasks that align to the Next Generation Science Standards and that connect to students’ interests. Our data sources were teachers’ descriptions of their design decisions about what phenomena to use to anchor assessment, designed assessment tasks, and interviews with them about those decisions. We found that interest was an important consideration for assessment design, but they considered student interests in different ways. Some teachers shifted their views of what it meant to engage student interests in the context of assessment design over the course of their participation in professional learning. Most teachers made decisions about what they believed their students were interested in based on their knowledge of students or beliefs about their students’ interests. In supporting teachers to design summative assessments that link to students’ interest, it is critical to assume teachers bring a range of conceptions of interest, and to consider the feasibility and utility of task design tools from teachers’ point of view. 
    more » « less
    Free, publicly-accessible full text available December 11, 2025
  4. Abstract This article explores the challenges of enacting reform‐oriented curriculum in science classrooms. We use the concept of figured worlds to analyze a case study of an eighth‐grade science class where the teacher reported that the students were resistant to changes she was trying to make. By examining stimulated recall interviews with the teacher (including the associated classroom episodes) and post‐unit interviews with a subset of the students, we found that the students and the teacher constructed different figured worlds about the science learning in the classroom. These differences centered on the goals that students and teachers had for the class and the roles of the teacher and students in the learning environment. Specifically, we found that there was a lack of alignment around how students and the teacher viewed the purpose of student agency and collaboration and therefore they had different ideas about how they should interact with one another in the classroom. We conclude by discussing the implications of our findings for science education. We believe that the concept of figured worlds allows researchers and teachers to better understand the challenges of implementing reform‐oriented practices in science classrooms. This understanding can help teachers and professional development providers to create strategies for bridging the gap between different figured worlds and creating more collaborative and productive learning environments for all students. 
    more » « less
    Free, publicly-accessible full text available December 27, 2025
  5. This study examined the ways in which an equity analytics tool — the SEET system — supported middle school science teachers’ reflections on the experiences of diverse students in their classrooms. The tool provides teachers with “equity visualizations” — disaggregated classroom data by gender and race/ethnicity — designed to support teachers to notice and reflect on inequitable patterns in student participation in classroom knowledge-building activities, as well as “whole class visualizations” that enable teachers to look at participation patterns. The visualizations were based on survey data collected from students reflecting on the day’s lessons, responding to questions aligned with three theoretical constructs indicative of equitable participation in science classrooms: coherence, relevance, and contribution. The study involved 42 teachers, divided into two cohorts, participating in a two-month professional learning series. Diary studies and semi-structured interviews were used to probe teachers’ perceptions of the visualizations’ usability, usefulness, and utility for supporting their reflections on student experiences and instructional practices. A key result is that only the “equity visualizations” prompted teacher reflections on diverse student experiences. However, despite the support equity visualizations provided for this core task, the teachers consistently ranked the whole class visualizations as more usable and useful. 
    more » « less
  6. Blikstein, Paolo; Van_Aalst, Jan; Kizito, Rita; Brennan, Karen (Ed.)
    Working with existing data is central to science investigations, but students and educators have generally not had experience using existing data sets to answer their own questions. We introduce a teaching routine that makes explicit critical steps in the process of working with data to gain insight into real-world phenomena. We intend the routine to support both curriculum developers and teachers in designing and enacting lessons to support students in engaging productively with scientific data, focusing on steps that are not commonly encountered in science classes. 
    more » « less
  7. Blikstein, Paolo; Van_Aalst, Jan; Kizito, Rita; Brennan, Karen (Ed.)
    A core practice of science is planning and conducting investigations. This practice needs reconceptualizing, to account for where work happens between identifying a phenomenon and designing an investigation, and between gathering and analyzing data to support developing an explanation of that phenomenon (Manz et al., 2020). Teachers, supported by curriculum materials, need to engage students in becoming more involved in the decisions related to what data to choose as evidence, how to represent data to answer specific questions, and what conclusions can be drawn from data. We present results of a design study in which students investigated a dataset to answer a question about a major change to an ecosystem, using a technology tool, CODAP. We explore how the curriculum and teacher supported students in taking up different facets of data practices that support figuring out a phenomenon while moving between investigating and developing explanatory models. 
    more » « less